Vektorprodukt zweier Vektoren

Gegeben sind zwei linear unabhängige Vektoren
$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 und $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ des R^3 .

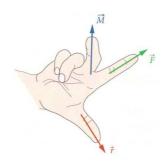
Gesucht ist ein Vektor
$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
, der sowohl zu \vec{a} als auch zu \vec{b} orthogonal ist.

Der Vektor
$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 kann mit Hilfe des so genannten Vektorproduktes bestimmt werden.

Für die Vektoren
$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
 des R^3 heißt $\vec{a} \times \vec{b} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$ das Vektorprodukt der Vektoren \vec{a} und \vec{b} .

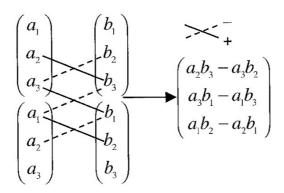
Bemerkungen:

- 1. Das Vektorprodukt ist nur für Vektoren des R³ definiert, nicht für Vektoren des R².
- 2. Das Vektorprodukt zweier Vektoren ist wieder ein Vektor. Darin unterscheidet es sich vom Skalarprodukt.
- 3. a×b zeigt nach der Drei-Finger-Regel der rechten Hand in die Richtung des Mittelfingers, wenn a dem Daumen und b dem Zeigefinger zugeordnet ist.



Zur Berechnung des Vektorproduktes kann folgendes Schema verwendet werden:

Beispiel:



$$\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} 7 \\ 4 \\ -1 \end{pmatrix} \qquad \Rightarrow \begin{pmatrix} 0 & 4 \\ 1 & -1 \\ 0 & 4 \\ 0 & 4 \end{pmatrix} \Rightarrow \begin{pmatrix} 0-4 \\ 7-(-2) \\ 8-0 \end{pmatrix} = \begin{pmatrix} -4 \\ 9 \\ 8 \end{pmatrix}$$

Rechengesetze für das Vektorprodukt:

Für alle Vektoren a,b,c \in R³ und $\lambda \in$ R gilt:

(1)
$$a \times b = -(b \times a)$$
 (Alternativgesetz)

(2)
$$a \times (b+c) = a \times b + a \times c$$
 (Distributivgesetz)

(3)
$$\lambda \cdot (a \times b) = (\lambda \cdot a) \times b = a \times (\lambda \cdot b)$$
 (Verträglichkeit mit S-Multiplikation)

(4)
$$a \times a = 0$$

Anwendungen des Vektorproduktes:

1. Berechnung des Normalenvektors

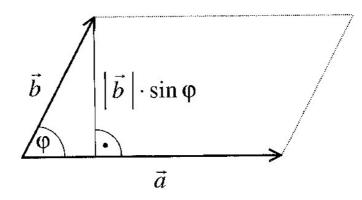
Der Vektor $n = a \times b$ steht senkrecht auf den Vektoren a und b und heißt Normalenvektor.

2. Berechnung der Fläche eines Parallelogramms

Für Maßzahl des Flächeninhalts des von den Vektoren a und b aufgespannten Parallelogramms gilt:

$$A = |\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \varphi$$

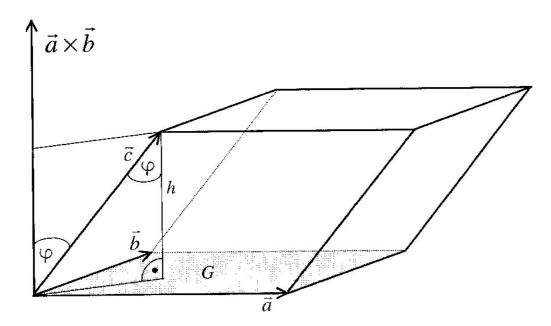
wobei φ der Winkel zwischen den Vektoren a und b ist



3. Volumen eines Spats

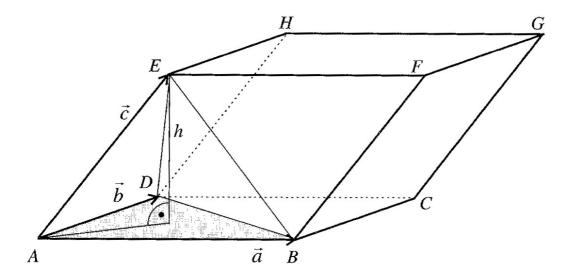
Der von den Vektoren \vec{a} , \vec{b} und \vec{c} des R^3 aufgespannte Spat hat das Volumen $V = |\vec{(a \times b)} \circ \vec{c}|$

$$V_{Spat} = G \cdot h \qquad G = \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} \qquad h = \begin{vmatrix} \vec{c} \end{vmatrix} \cdot \cos \phi \begin{vmatrix} \vec{c} \end{vmatrix}$$
$$\Rightarrow V_{Spat} = \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} \cdot \begin{vmatrix} \vec{c} \end{vmatrix} \cdot \cos \phi = \begin{vmatrix} \vec{c} \times \vec{b} \end{vmatrix} \circ \vec{c} \begin{vmatrix} \vec{c} & \vec{c} \end{vmatrix}$$



Folgerung: Volumen einer dreiseitigen Pyramide

Drei linear unabhängige Vektoren \vec{a} , \vec{b} und \vec{c} des R^3 spannen eine Pyramide ABDE auf (siehe Skizze).



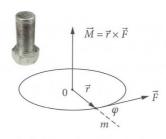
Für das Volumen dieser Pyramide gilt:

$$V = \frac{1}{3} \cdot G_{Pyramide} \cdot h = \frac{1}{3} \cdot (\frac{1}{2} \cdot G_{Spat}) \cdot h = \frac{1}{6} \cdot | (\overrightarrow{a} \times \overrightarrow{b}) \circ \overrightarrow{c} |$$

4. Drehmoment:

Zieht man eine Schraube mit einem Schlüssel an, so bringt man im Abstand $\, r \,$ zum Mittelpunkt der Rotation eine Kraft $\stackrel{\rightarrow}{F}$ auf.

Für das Drehmoment M, das auf die Schraube wirkt, gilt dann: $M=r\times F$.



Beispiel:

$$\vec{r} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \vec{F} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

$$\Rightarrow \vec{M} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \times \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

Der Betrag des Drehmoments beträgt also 2 Nm.